Abstract
In recent years, different kinds of natural hazards or man-made disasters happened that were diversified and difficult to control with heavy casualties. In this paper, we focus on the rapid and systematic evacuation of large-scale densities of people after disasters to reduce loss in an effective manner. The optimal evacuation planning is a key challenge and becomes a hotspot of research and development. We design our system based on an Internet of Things (IoT) scenario that utilizes a mobile cloud computing platform in order to develop the crowd lives oriented track and help optimization system (CLOTHO). CLOTHO is an evacuation planning system for large-scale densities of people in disasters. It includes the mobile terminal (IoT side) for data collection and the cloud backend system for storage and analytics. We build our solution upon a typical IoT/fog disaster management scenario and we propose an IoT application based on an evacuation planning algorithm that uses the artificial potential field (APF), which is the core of CLOTHO. APF is conceptualized as an IoT service, and can determine the direction of evacuation automatically according to the gradient direction of the potential field, suitable for rapid evacuation of large population. Based on APF, we propose an evacuation planning algorithm names as APF with relationship attraction (APF-RA). APF-RA guides the evacuees with relationship to move to the same shelter as much as possible, to calm evacuees and realize a more humanitarian evacuation. The experimental results show that CLOTHO (using APF and APF-RA) can effectively improve convergence rate, shorten the evacuation route length and evacuation time, and make the remaining capacity of the surrounding shelters well balanced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.