Abstract

Clothianidin, a neonicotinoid insecticide that binds to arthropod nicotinic acetylcholine receptors, is widely used to protect plants against a wide variety of agricultural pests. Little is known about how this insecticide affects non-target invertebrate species in aquatic environments. In this study, we explored the effects of aqueous exposures of clothianidin on locomotion, chemosensory-based responses, and agonistic encounters of rusty crayfish (Faxonius rusticus). Clothianidin exposures at a concentration of 1.0 μg/L (i.e., 1.0 ppb) did not alter initiations and retreats, but did increase the amount of time the crayfish interacted per interaction. In a subsequent food cue experiment with crayfish exposed to clothianidin concentrations of 0.4 μg/L and 1.0 μg/L, the test organisms demonstrated chemosensory dysfunction, but no decrease in locomotory movement. As chemosensation is essential for recognizing previous rivals in crayfish, the loss of this sense likely resulted in the exposed crayfish being unable to detect cues used to recognize a previous competitor. An inability to recognize a previous competitor (and who won or lost the previous interaction) could result in crayfish spending more time fighting and less time on foraging and reproduction. This study demonstrates that exposures of crayfish to clothianidin at concentrations found in the environment affects the behavioural ecology of these aquatic invertebrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call