Abstract

This paper, which was originally published in more detail (M.M. Pilch, M.D. Allen, D.L. Knudsen, D.W. Stamps and E.L. Tadios, Rep. NUREG/CR-6075, Supplement 1, 1994b (Sandia National Laboratories, Albuquerque, NM)), provides closure of the direct containment heating (DCH) issue for the Zion plant. It incorporates the comments and suggestions of the peer reviewers of NUREG/CR-6075 (M.M. Pilch, H. Yan, and T.G. Theofanous, Rep. NUREG/CR-6075, SAND93-1535, 1994a (Sandia National Laboratories, Albuquerque, NM)) and specifically includes assessments of four new splinter scenarios defined in working group meetings and modeling enhancements recommended by the working groups. In the four new scenarios, consistency of the initial conditions has been implemented by using insights from systems-level codes. scdap/relap5 was used to analyze three short-term station blackout cases with different leak rates. In all three cases, the hot leg or surge line failed well before the lower head and thus the primary system depressurized to a point where DCH was no longer considered a threat. However, these calculations were continued to lower head failure in order to gain insights that were useful in establishing the initial and boundary conditions. The most useful insights are that the reactor coolant system pressure is low at vessel breach, metallic blockages in the core region do not melt and relocate into the lower plenum, and melting of upper plenum steel is correlated with hot leg failure. The scdap/relap5 output was used as input to contain to assess the containment conditions at vessel breach. The containment-side conditions predicted by contain are similar to those originally specified in NUREG/CR-6075. The methodology originally developed in NUREG/CR-6075 (M.M. Pilch, H. Yan, and T.G. Theofanous, Rep. NUREG/CR-6075, SAND93-1535, 1994a (Sandia National Laboratories, Albuquerque, NM)) was used to analyze the new splinter scenarios. Some modeling enhancements in response to working group discussions were implemented for these analyses. The entrainment of hydrogen pre-existing in the atmosphere into a burning jet was examined more carefully. In addition, the impact of DCH-induced deflagrations on DCH loads was quantified. A new computational tool—the two-cell equilibrium—Latin hypercube sampling (TCE-LHS) code—was developed for this effort to perform Monte Carlo sampling of the scenario distributions. The TCE-LHS code was benchmarked against the original Scenario I calculations in NUREG/CR-6075 performed using the alpha code, which is based on the method of discrete probability distributions. The results were in excellent agreement. The analyses of the new scenarios showed no intersection of the load distributions and the containment fragility curves, and thus the containment failure probability was negligible for each scenario. These supplemental analyses complete closure of the DCH issue for Zion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call