Abstract
Summary This paper considers fitting generalized linear models to binary data in nonstandard settings such as case–control samples, studies with misclassified responses and misspecified models. We develop simple methods for fitting models to case–control data and show that a closure property holds for generalized linear models in the nonstandard settings, i.e. if the responses follow a generalized linear model in the population of interest, then so will the observed response in the non-standard setting, but with a modified link function. These results imply that we can analyse data and study problems in the non-standard settings by using classical generalized linear model methods such as the iteratively reweighted least squares algorithm. Example data illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.