Abstract

BackgroundClostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis.ResultsIn this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume.ConclusionThis study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

Highlights

  • Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol

  • This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors

  • C. thermocellum growth response to ethanol and extracellular metabolite profiles Culture turbidity, as measured by OD600 units, for the ethanol-treatment fermentors prior to ethanol shock was similar to the control fermentors (0.59 ± 0.02 vs 0.55 ± 0.02, respectively) (Figure 1)

Read more

Summary

Introduction

Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. Clostridium thermocellum is a Gram-positive, anaerobic, thermophilic bacterium that produces large extracellular enyzme complexes, called cellulosomes. It can rapidly solubilize biomass and it is a candidate microorganism for converting biomass into lignocellulosic ethanol via a process termed consolidated bioprocessing (CBP) Increased ethanol tolerance and productivity are not necessarily linked, with the highest concentrations of ethanol produced reported as ≤ 30 g/L [12]. The role of compatible solutes such as trehalose, amino acids, such as proline [14,15], in ethanol tolerance and specific genes (e.g. [16,17,18]) have been investigated in a variety of microorganisms

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.