Abstract

ObjectivesClostridium perfringens epsilon-toxin is considered to be a crucial agent in enterotoxemia in domestic animals. Epsilon-toxin enters host cells via endocytosis and results in the formation of late endosome/lysosome-derived vacuoles. In the present study, we found that acid sphingomyelinase promotes the internalization of epsilon-toxin in MDCK cells. MethodsWe measured the extracellular release of acid sphingomyelinase (ASMase) by epsilon-toxin. We examined the role of ASMase in epsilon-toxin-induced cytotoxicity using selective inhibitors and knockdown of ASMase. Production of ceramide after toxin treatment was determined by immunofluorescence technique. ResultsBlocking agents of ASMase and exocytosis of lysosomes inhibited this epsilon-toxin-induced vacuole formation. Lysosomal ASMase was liberated to extracellular space during treatment of the cells with epsilon-toxin in the presence of Ca2+. RNAi-mediated attenuation of ASMase blocked epsilon-toxin-induced vacuolation. Moreover, incubation of MDCK cells with epsilon-toxin led to production of ceramide. The ceramide colocalized with lipid raft-binding cholera toxin subunit B (CTB) in the cell membrane, indicating that conversion of lipid raft associated sphingomyelin to ceramide by ASMase facilitates lesion of MDCK cells and internalization of epsilon-toxin. ConclusionsBased on the present results, ASMase is required for efficient internalization of epsilon-toxin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call