Abstract
Clostridium difficile toxin A causes mitochondrial dysfunction resulting in generation of oxygen radicals and adenosine triphosphate (ATP) depletion. We investigated whether mitochondrial dysfunction is involved in nuclear factor kappaB (NF-kappaB) activation and interleukin (IL)-8 release from toxin A-exposed enterocytes. NF-kappaB activation and IL-8 release in response to toxin A were correlated with reactive oxygen intermediate (ROI) generation and ATP production in HT-29 monolayers or HT-29 cells exposed to ethidium bromide (EB) to inhibit mitochondrial function. HT-29 cells exposed to EB showed damaged mitochondria and diminished resting levels of ATP. ROI production in EB-treated cells exposed to toxin A for 30 minutes was significantly reduced. Exposure of wild-type HT-29 cells to toxin A resulted in increased oxygen radical generation and IL-8 production (P < 0.01 vs. control) that was inhibited by antioxidant pretreatment. Degradation of IkappaB was observed within 30 minutes of toxin exposure, before ras homologue (Rho) glucosylation, and was followed by nuclear translocation of NF-kappaB. Toxin A did not increase IL-8 levels in EB-treated cells, whereas IL-8 release in response to IL-1beta was not affected. Our data support an early role for mitochondria-derived ROIs in stimulation of IL-8 release from colonocytes by toxin A. ROI generation is independent of Rho inactivation and involves nuclear translocation of NF-kappaB before release of IL-8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.