Abstract

Simple SummaryDuring the hot season, ruminants can easily suffer from heat stress. Heat stress can inevitably lead to loss of livestock production. Supplementing their diet with probiotics is an effective approach to improving livestock welfare. This study showed that dietary supplementation of heat-stressed goats with Clostridium butyricum, both in vitro and in vivo, can effectively alleviate heat stress by improving the rumen fermentation and growth performance of goats. This study provides a reference for the use of this probiotic in goat production when heat stress occurs.This study aimed to evaluate the effects of Clostridium butyricum on rumen fermentation and the growth performance of heat-stressed goats. The in vitro fermentation was carried out using Clostridium butyricum supplement at 0% (CG), 0.025% (CB1), 0.05% (CB2), 0.10% (CB3), and 0.20% (CB4) of the dry matter (DM) weight of basal diet. Results showed that ruminal pH and the concentrations of ammonia nitrogen, total volatile fatty acids, acetic acid, propionic acid, as well as the acetic acid to propionic acid ratio were significantly increased (p < 0.05) in CB2 and CB3 compared with the CG group. Additionally, significant increases (p < 0.05) in the degradability of DM, neutral detergent fiber, and acid detergent fiber were observed in CB2 and CB3 compared with the CG group. For the in vivo study, 12 heat-stressed goats were divided equally into three groups: the control (HS1) was fed the basal diet, and groups HS2 and HS3 were fed with 0.05% and 0.10% Clostridium butyricum added to the basal diet, respectively. The experiment was designed as a 3 × 3 Latin square. Similar effects on rumen fermentation and digestibility parameters were obtained with 0.05% of Clostridium butyricum supplement compared to the in vitro study. Moreover, the dry matter intake and average daily gain were significantly increased (p < 0.05) in HS2 compared with other groups. These results indicated that an effective dose of Clostridium butyricum supplement (0.05%) could improve the rumen fermentation and growth performance of heat-stressed goats.

Highlights

  • The large amounts of heat produced by rumen fermentation contribute to the low tolerance that ruminants have against high environmental temperatures, goats in this region are prone to suffering from heat stress during the summer [2]

  • There were no significant differences in the body temperatures of goats across the whole time before (CG) and after heat-stressed modeling (HS)

  • This result was consistent with a previous study in which ruminal pH significantly increased in calves whose diet had been supplemented with Clostridium butyricum

Read more

Summary

Introduction

The large amounts of heat produced by rumen fermentation contribute to the low tolerance that ruminants have against high environmental temperatures, goats in this region are prone to suffering from heat stress during the summer [2]. Heat stress causes various adverse impacts on ruminants, including lowered rumen pH, decreased production of rumen volatile fatty acid (TVFA), reduced digestibility of feed, and oxidative stress [2,3,4,5]. These effects eventually lead to a decline in goat production and economic loss [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call