Abstract
AbstractNon‐growing season CO2 emissions from Arctic tundra remain a major uncertainty in forecasting climate change consequences of permafrost thaw. We present the first time series of soil and microbial CO2 emissions from a graminoid tundra based on year‐round in situ measurements of the radiocarbon content of soil CO2 (Δ14CO2) and of bulk soil C (Δ14C), microbial activity, and temperature. Combining these data with land‐atmosphere CO2 exchange allows estimates of the proportion and mean age of microbial CO2 emissions year‐round. We observe a seasonal shift in emission sources from fresh carbon during the growing season (August Δ14CO2 = 74 ± 4.7‰, 37% ± 3.4% microbial, mean ± se) to increasingly older soil carbon in fall and winter (March Δ14CO2 = 22 ± 1.3‰, 47% ± 8% microbial). Thus, rising soil temperatures and emissions during fall and winter are depleting aged soil carbon pools in the active layer and thawing permafrost and further accelerating climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.