Abstract

Two well-known low-ceiling-temperature (LCT) monomers, γ-butyrolactone (γ-BL) toward ring-opening polymerization (ROP) to polyester and cyclohexene toward ring-opening metathesis polymerization (ROMP) to poly(cyclic olefin), are notoriously "nonpolymerizable". Here we present a strategy to render not only polymerizability of both the γ-BL and cyclohexene sites, orthogonally, but also complete and orthogonal depolymerization, through creating an LCT/LCT hybrid, bicyclic lactone/olefin (BiL=). This hybrid monomer undergoes orthogonal polymerization between ROP and ROMP, depending on the catalyst employed, affording two totally different classes of polymeric materials from this single monomer: polyester P(BiL=)ROP via ROP and functionalized poly(cyclic olefin) P(BiL=)ROMP via ROMP. Intriguingly, both P(BiL=)ROP and P(BiL=)ROMP are thermally robust but chemically recyclable under mild conditions (25-40 °C), in the presence of a catalyst, to recover cleanly the same monomer via chain unzipping and scission, respectively. In the ROP, topological and stereochemical controls have been achieved and the structures characterized. Furthermore, the intact functional group during the orthogonal polymerization (i.e., the double bond in ROP and the lactone in ROMP) is utilized for postfunctionalization for tuning materials' thermal and mechanical performances. The impressive depolymerization orthogonality further endows selective depolymerization of both the ROP/ROMP copolymer and the physical blend composites into the same starting monomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call