Abstract
We describe a closed-loop brain–computer interface that re-ranks an image database by iterating between user generated ‘interest’ scores and computer vision generated visual similarity measures. The interest scores are based on decoding the electroencephalographic (EEG) correlates of target detection, attentional shifts and self-monitoring processes, which result from the user paying attention to target images interspersed in rapid serial visual presentation (RSVP) sequences. The highest scored images are passed to a semi-supervised computer vision system that reorganizes the image database accordingly, using a graph-based representation that captures visual similarity between images. The system can either query the user for more information, by adaptively resampling the database to create additional RSVP sequences, or it can converge to a ‘done’ state. The done state includes a final ranking of the image database and also a ‘guess’ of the user's chosen category of interest. We find that the closed-loop system's re-rankings can substantially expedite database searches for target image categories chosen by the subjects. Furthermore, better reorganizations are achieved than by relying on EEG interest rankings alone, or if the system were simply run in an open loop format without adaptive resampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.