Abstract
Although levodopa remains the most efficacious symptomatic therapy for Parkinson disease (PD), management of levodopa treatment during the advanced stages of the disease is extremely challenging. This difficulty is a result of levodopa's short half-life, a progressive narrowing of the therapeutic window, and major inter-patient and intra-patient variations in the dose-response relationship. Therefore, a suitable alternative to repeated oral administration of levodopa is being sought. Recent research efforts have focused on the development of novel levodopa delivery strategies and wearable physical sensors that track symptoms and disease progression. However, the need for methods to monitor the levels of levodopa present in the body in real time has been overlooked. Advances in chemical sensor technology mean that the development of wearable and mobile biosensors for continuous or frequent levodopa measurements is now possible. Such levodopa monitoring could help to deliver personalized and timely medication dosing to alleviate treatment-related fluctuations in the symptoms of PD. Therefore, with the aim of optimizing therapeutic management of PD and improving the quality of life of patients, we share our vision of a future closed-loop autonomous wearable 'sense-and-act' system. This system consists of a network of physical and chemical sensors coupled with a levodopa delivery device and is guided by effective big data fusion algorithms and machine learning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.