Abstract

The ancient tradition of taking parts of a plant or preparing plant extracts for treating certain discomforts and maladies has long been lacking a scientific rationale to support its preparation and still widespread use in several parts of the world. In an attempt to address this challenge, we collected and integrated data connecting metabolites, plants, diseases, and proteins. A mechanistic hypothesis is generated when a metabolite is known to be present in a given plant, that plant is known to be used to treat a certain disease, that disease is known to be linked to the function of a given protein, and that protein is finally known or predicted to interact with the original metabolite. The construction of plant–protein networks from mutually connected metabolites and diseases facilitated the identification of plausible mechanisms of action for plants being used to treat analgesia, hypercholesterolemia, diarrhea, catarrh, and cough. Additional concrete examples using both experimentally known and computationally predicted, and subsequently experimentally confirmed, metabolite–protein interactions to close the connection circle between metabolites, plants, diseases, and proteins offered further proof of concept for the validity and scope of the approach to generate mode of action hypotheses for some of the therapeutic uses of remedial herbs.

Highlights

  • Plant leaves, roots, barks, and extracts have been used since the dawn of human history to treat various discomforts and maladies

  • Among the 372 medicinal plants present in our integrated database, Sambucus nigra is the plant associated with the highest number of therapeutic uses (31)

  • If we focus on cardiovascular diseases, a total of 171 plants were found to be associated with 46 different therapeutic uses

Read more

Summary

Introduction

Roots, barks, and extracts have been used since the dawn of human history to treat various discomforts and maladies. Global efforts to generate, collect, store, and make publicly available data connecting plants with their endogenous metabolites (phytoconstituents), interacting proteins, and disease indications have set the ground to develop novel systems approaches to unveiling the mode of action of remedial herbs (Liu et al, 2013; Lagunin et al, 2014; Chen et al, 2017). A number of publicly available well annotated databases on medicinal plants

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.