Abstract

Although it is commonly assumed that pulmonary congestion and edema in patients with chronic heart failure (CHF) promotes peripheral airway closure, closing capacity (CC) has not been measured in CHF patients. To measure CC and the presence or absence of airway closure and expiratory flow limitation (FL) during resting breathing in CHF patients. In 20 CHF patients and 20 control subjects, we assessed CC, FL, spirometry, blood gas levels, control of breathing, breathing pattern, and dyspnea. The patients exhibited a mild restrictive pattern, but the CC was not significantly different from that in control subjects. Nevertheless, airway closure during tidal breathing (ie, CC greater than functional residual capacity [FRC]) was present in most patients but was absent in all control subjects. As a result of the maldistribution of ventilation and the concurrent impairment of gas exchange, the mean (+/- SD) alveolar-arterial oxygen pressure difference increased significantly in CHF patients (4.3 +/- 1.2 vs 2.7 +/- 0.5 kPa, respectively; p < 0.001) and correlated with systolic pulmonary artery pressure (r = 0.49; p < 0.03). Tidal FL is absent in CHF patients. Mouth occlusion pressure 100 ms after onset of inspiratory effort (P0.1) as a percentage of maximal inspiratory pressure (Pimax) together with ventilation were increased in CHF patients (p < 0.01 and p < 0.005, respectively). The increase in ventilation was due entirely to increased respiratory frequency (fR) with a concurrent decrease in Paco2. Chronic dyspnea (scored with the Medical Research Council [MRC] scale) correlated (r2= 0.61; p < 0.001) with fR and P0.1/Pimax. In CHF patients at rest, CC is not increased, but, as a result of decreased FRC, airway closure during tidal breathing is present, promoting the maldistribution of ventilation, ventilation-perfusion mismatch, and impaired gas exchange. The ventilation is increased as result of increased fR, and Pimax is decreased with a concurrent increase in P0.1, implying that there is a proportionately greater inspiratory effort per breath (P0.1/Pimax). These, together with the increased fR, are the only significant contributors to increases in the MRC dyspnea score.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.