Abstract
For j=1,2 and for positive integers m and n, we consider classes of harmonic functions fj=hj+gj¯, where g1(z)=znh1(z) and g2′(z)=znh2′(z) or g1′(z)=znh1′(z) and g2′(z)=zmh2′(z), and we prove that their convolution f1⁎f2=h1⁎h2+g1⁎g2¯ is locally one-to-one, sense-preserving, and close-to-convex harmonic in z<1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.