Abstract

It is well known that for pure states the relative entropy of entanglement is equal to the reduced entropy, and the closest separable state is explicitly known as well. The same holds for Renyi relative entropy per recent results. We ask the same question for a quasi-relative entropy of entanglement, which is an entanglement measure defined as the minimum distance to the set of separable state, when the distance is measured by the quasi-relative entropy. First, we consider a maximally entangled state, and show that the closest separable state is the same for any quasi-relative entropy as for the relative entropy of entanglement. Then, we show that this also holds for a certain class of functions and any pure state. And at last, we consider any pure state on two qubit systems and a large class of operator convex function. For these, we find the closest separable state, which may not be the same one as for the relative entropy of entanglement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call