Abstract

General stiffness performance of manufacturing process system directly affects machining accuracy and stability. When machining complex surface, general stiffness performance changes with tool posture that is determined by machining position and feed direction. In order to analyze general stiffness performance including machine tool, cutter and workpiece, a closed loop stiffness model is established by Jacobi matrix and finite element method. It is a general stiffness model for multi-axis process system, which can be used to evaluate general stiffness performance in workspace. The distribution law of stiffness performance can be evaluated by isoclines map of stiffness index plotted in workpiece coordinate system. The result helps engineers plan tool path based on both geometric and physics constrains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.