Abstract

Efficient wireless power transfer (WPT) requires closedloop control to perform maximum efficiency point tracking (MEPT) against the dynamic changes of operating conditions. In this paper, we took the latest deltasigma pulse-density-modulated (PDM) WPT system as the plant and presented a systematic control design procedure. The WPT system was modeled by the reducedorder dynamic phasor method and further decoupled under the tuned condition. It was identified that the coupled resonators behave like a secondorder system, and its natural frequency is much lower than the resonant frequency. This was considered in the closedloop design to derive a suitable loop gain and ensure stability. The nonlinearity caused by the dualside PDM control is limited to a small inner loop so that the entire loop is linear and simple. Experimental results showed that the closedloop voltage regulation and MEPT took only about 10 ms after load stepping. The system DC output voltage was always tightly regulated, and the steadystate efficiency was very close to the theoretical maximum value under different coupling conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.