Abstract

In this paper, a cascade controller is designed and analyzed for a boost converter. The fast inner current loop uses sliding-mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics. It is proven that the closed-loop system has a nonminimum phase behavior. The voltage transients and reference voltage are predictable. The current ripple and system sensitivity are studied. The controller is validated by a simulation circuit with nonideal circuit parameters, different circuit parameters, and various maximum switching frequencies. The simulation results show that the reference output voltage is well tracked under parametric changes, system uncertainties, or external disturbances with fast dynamic transients, confirming the validity of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call