Abstract

Abstract This paper presents two different analytical methods to investigate the magneto-mechanical coupling effect for piezomagnetic inhomogeneities embedded in a non-piezomagnetic matrix. First, the magnetoelastic solution is expressed in terms of magnetoelastic Green's function that can be decoupled into elastic Green's function and magnetic Green's function. Second, the problem is analyzed by the equivalent inclusion method, and then, the formulation of the inhomogeneity problem can be decoupled into an elastic problem and a magnetic inhomogeneity problem connected by some eigenstrain and eigenmagnetic fields. For the piezomagnetic composites with a non-piezomagnetic matrix, these two solutions are completely equivalent each other though they are obtained by means of two different methods. Moreover, based upon the unified energy method, the effective magnetoelastic moduli of the composites are expressed explicitly in terms of phase properties and volume fractions. Then the dilute and Mori–Tanaka schemes are discussed, respectively. Finally, the calculations are made to predict the effective magnetoelastic moduli and illustrate the performance of each model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.