Abstract

This paper considers a Solow-Swan economic growth model with the labor force ruled by the logistic equation added by a constant migration rate, I. We prove the global asymptotic stability of the capital and production per capita. Considering a Cobb-Douglas production function, we show this model to have a closed-form solution, which is expressed in terms of the Beta and Appell F1 special functions. We also show, through simulations, that if I>0, it implies in a smaller capital and product per capita in the short term, but in a higher capital and product per capita in the middle and long terms. In both cases, these per capita variables converge to the same steady-state given by the model without migration. If I<0 the transient behavior is the opposite. Finally, if I=0, we recover the solution for the pure logistic case, involving Gauss' Hypergeometric Function 2F1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.