Abstract

Contact of a circular ring with a flat, rigid ground is considered using curved beam theory and analytical methods. Applications include tires, springs, and stiffeners, among others. The governing differential equations are derived using the principle of virtual work and the formulation includes deformations due to bending, transverse shear and circumferential extension. The three associated stiffness quantities, EI, GA and EA, respectively, remain as independent parameters in the differential equations. This allows the special cases such as an inextensible Timoshenko beam ( EI and GA) or an extensible Euler beam ( EI and EA) to be obtained directly by the appropriate limits. The effect of these three stiffness parameters on the contact pressure solution is studied, which shows how those fundamental parameters can be selected for the purpose of the application. Although the formulation is for small displacement theory, both radial and circumferential distributed loads are considered, which allows the pressure in the deformed state to be vertical rather than radial, which is shown to be important. Closed form expressions for all force and displacement quantities are obtained in terms of the angular location of the edge of contact, which must be determined numerically. Extensibility complicates the analytical expressions within the contact region, and a series solution is proposed in this case. A two-term asymptotic expression for the stiffness of the ring is determined analytically. Finally, all solutions are validated using the commercial finite element software ABAQUS, with attention to non-linear behavior and the range of validity of these solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.