Abstract

The circular cylindrical shells have been widely used in modern engineering structures, especially in the aerospace industry such as the oil pipeline, the missile, spacecraft hull, storage tanks. In recent years, functionally graded carbon nanotube composites (FG-CNTRCs) have emerged, as a promising type of composites. Due to the increasing demands for high structures performance, this research paper proposes a closed-form solution to investigate the nonlinear buckling behavior of the FG-CNTRC cylindrical shells subjected to compressive load. The small initial imperfections of the FG-CNTRC cylindrical shells are also considered through analytical modeling. Effective properties of materials of the shells reinforced by single-walled carbon nanotubes (SWCNTs) are estimated through a micro-mechanical model based on the extended rule of mixtures. The Donnell shell theory and von-Karman nonlinear kinematics are used for nonlinear equilibrium equations. The novelty of this work is to exploit an exact solution via Galerkin procedure and term of the Airy stress function in order to reveal the impacts of the imperfection parameter, different types of CNTs distribution, the volume fraction of CNTs on nonlinear behavior and compressive equilibrium paths of FG-CNTRC cylindrical shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.