Abstract

In this paper, we propose a simple analytical methodology to study the performance of multi-source multi-relay cooperative wireless networks with network coding at the relay nodes and Maximum-Likelihood (ML-) optimum channel-aware detectors at the destination. Channel-aware detectors are a broad class of receivers that account for possible decoding errors at the relays, and, thus, are inherently designed to mitigate the effect of erroneous forwarded and network-coded data. In spite of the analytical complexity of the problem at hand, the proposed framework turns out to be simple enough yet accurate and insightful to understand the behavior of the system, and, in particular, to capture advantages and disadvantages of various network codes and the impact of error propagation on their performance. It is shown that, with the help of cooperation, some network codes are inherently more robust to decoding errors at the relays, while others better exploit the inherent spatial diversity and redundancy provided by cooperative networking. Finally, theory and simulation highlight that the relative advantage of a network code with respect to the others might be different with and without decoding errors at the relays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.