Abstract

We study the problem of formation shape control under the constraints on the thrust direction. Formations composed of small satellites are usually subject to serious limitations for power consumption, mass, and volume of the attitude and orbit control system (AOCS). If the purpose of the formation flying mission does not require precise tracking of a given relative trajectory, AOCS of satellites may be substantially simplified; however, the capacity of AOCS to ensure a bounded or even periodic relative motion has to be studied first. We consider a formation of two satellites; the deputy one is equipped with a passive attitude control system that provides one‐axis stabilization and a propulsion system that consists of one or two thrusters oriented along the stabilized axis. The relative motion of the satellites is modeled by the Schweighart‐Sedwick linear equations taking into account the effect of J2 perturbations. We prove that both in the case of passive magnetic attitude stabilization and spin stabilization for all initial relative positions and velocities of satellites there exists a control guaranteeing their periodic relative motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.