Abstract
We give explicit combinatorial product formulas for the polynomials encoding the dimensions of the spaces of extensions of ( g , p ) (g,p) -generalized Verma modules, in the cases when ( g , p ) (g,p) corresponds to an indecomposable classic Hermitian symmetric pair. The formulas imply that these dimensions are combinatorial invariants. We also discuss how these polynomials, defined by Shelton, are related to the parabolic R R -polynomials introduced by Deodhar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.