Abstract

Abstract In today’s globalized and highly uncertain business environments, supply chains have become more vulnerable to disruptions. This paper presents a stochastic robust optimization model for the design of a closed-loop supply chain network that performs resiliently in the face of disruptions. The proposed model is capable of considering lateral transshipment as a reactive strategy to cope with operational and disruption risks. The objective is to determine facility location decisions and lateral transshipment quantities that minimize the total supply chain cost across different disruption scenarios. A Lagrangian relaxation algorithm is developed to solve the robust model efficiently. Important managerial insights are obtained from the model implementation in a case study of glass the industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.