Abstract

This paper discusses a novel static control approach applied to magnetic soft continuum robots (MSCRs). Our aim is to demonstrate the control of a multi-magnet soft continuum robot (SCR) in 3D. The proposed controller, based on a simplified yet accurate model of the robot, has a high update rate and is capable of real-time shape control. For the actuation of the MSCR, we employ the dual external permanent magnet (dEPM) platform and we sense the shape via fiber Bragg grating (FBG). The employed actuation system and sensing technique makes the proposed approach directly applicable to the medical context. We demonstrate that the proposed controller, running at approximately 300 Hz, is capable of shape tracking with a mean error of 8.5% and maximum error of 35.2% . We experimentally show that the static controller is 25.9% more accurate than a standard PID controller in shape tracking and is able to reduce the maximum error by 59.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.