Abstract
Blood pressure management is a critical aspect of patient care, particularly in surgical and critical care settings. Closed-loop systems, which utilize real-time data and feedback to adjust treatment interventions, have gained attention for their potential to enhance blood pressure control. This review explores the application of closed-loop systems in blood pressure management. We discuss various closed-loop approaches, including their mechanisms, benefits, and limitations. By harnessing real-time patient data and feedback, closed-loop systems can tailor interventions dynamically, thus enhancing blood pressure regulation. Additionally, we examine the integration of advanced monitoring technologies and artificial intelligence algorithms in closed-loop systems. The review highlights recent studies and their findings, emphasizing the evolving landscape of closed-loop blood pressure management across different clinical scenarios. From the perioperative period to critical care settings, closed-loop systems hold the potential to optimize patient outcomes by precisely adjusting vasopressor administration in response to continuous blood pressure fluctuations. By providing insights into the current state of closed-loop systems for blood pressure control, this review offers a comprehensive overview of their potential contributions to improved patient outcomes and future directions for research and implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.