Abstract
A generalized predictive closed-loop control strategy to improve the basal ganglia activity patterns in Parkinson's disease (PD) is explored in this paper. Based on system identification, an input-output model is established to reveal the relationship between external stimulation and neuronal responses. The model contributes to the implementation of the generalized predictive control (GPC) algorithm that generates the optimal stimulation waveform to modulate the activities of neuronal nuclei. By analyzing the roles of two critical control parameters within the GPC law, optimal closed-loop control that has the capability of restoring the normal relay reliability of the thalamus with the least stimulation energy expenditure can be achieved. In comparison with open-loop deep brain stimulation and traditional static control schemes, the generalized predictive closed-loop control strategy can optimize the stimulation waveform without requiring any particular knowledge of the physiological properties of the system. This type of closed-loop control strategy generates an adaptive stimulation waveform with low energy expenditure with the potential to improve the treatments for PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.