Abstract

In this paper, the problem of tuning the attitude control system of a multirotor unmanned aerial vehicle (UAV) is tackled and a data-driven approach is proposed. With respect to previous work, the data used to tune the controller gains is collected in flight during closed-loop experiments. Furthermore, the simultaneous tuning of roll and pitch attitude control loops is demonstrated, thus paving the way to MIMO data-driven attitude control design. Simulation results confirmed that a MIMO controller allows rejecting undesired coupling effects that affect the performance of a standard decoupled controller usually employed in autopilots for multirotor UAVs. Finally, the results based on experimental work carried out on a quadrotor UAV show that a good level of performance can be achieved in typical operating conditions with the proposed tuning method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.