Abstract
This paper presents an innovative concept of a closed-loop machining cell for turbine blade finishing that integrates a robotic surface finishing device with an electro-optical, non-contact precision measuring system. We propose that a synergistic combination of these leading edge technologies allows us to close the loop between finishing and inspection. Instead of part measurement being a mere off-line verification operation, it can direct the robot to do the necessary work and provide feedback to achieve higher finishing precision. In this paper, we describe the challenges in closing the loop seamlessly and our approach to resolve them. We present the overall architecture in which the part is measured using a multiple cooperative sensor system, and the robot is directed until the desired finish is obtained. We present details on the use of multi-sensor inspection and corresponding integration of the various components (hardware and software). We validate by application to turbine blades that are used commercially. Utilizing the suggested concept, turbine blade manufacturers will benefit by realizing greatly increased product throughput and reduced cost. The potential for generating scrap is reduced, and two separate, time-consuming operations will be consolidated into a single setup. It will also reduce hardware, footprint, maintenance, and energy costs by their sharing of common components. This concept can be extended to similar closed-loop manufacturing cells with minor modifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.