Abstract

This work deals with the inverse kinematics problem for a flexible robot manipulator under gravity in contact with a stiff surface. This problem consists of finding the joint and deflection variables for a given tip position and constraint force. The solution algorithm is based on the well-known closed-loop inverse kinematics (CLIK) scheme, using the Jacobian transpose, developed for rigid manipulators. The Jacobian employed in the algorithm is obtained by correcting the equivalent rigid manipulator Jacobian with two terms that account for the static deflections due to gravity and contact force, respectively. The algorithm is tested in a number of case studies on a planar two-link arm. ©1999 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.