Abstract

Many practical applications, such as the fuel control of a gas turbine engine, can be modeled by a feedback connection of a linear controller in series with a Hammerstein system, where the nonlinearity provides a representation of the control element or actuator. An iterative gradient-based method is proposed to simultaneously identify the nonlinear fuel valve characteristic and a low-order linear plant model in gas turbine applications that leverages a priori knowledge of both the nonlinearity and engine dynamics. The identification is a nonlinear prediction error minimization method in a closed-loop Hammerstein model framework. It is applied to data from a high-fidelity simulation of a 5 megawatt TaurusTM 60 industrial gas turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.