Abstract

The exploration of thermoelectric materials is challenging considering the large materials space, combined with added exponential degrees of freedom coming from doping and the diversity of synthetic pathways. Here, historical data is incorporated, and is updated using experimental feedback by employing error-correction learning (ECL). This is achieved by learning from prior datasets and thenadapting the model to differences in synthesis and characterization that are otherwise difficult to parameterize. This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures <300○ C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2× that of PbSe. The investigations herein reveal that a closed-loop experimentation strategy reduces the required number of experiments to find an optimized material by a factor as high as 3× compared to high-throughput searches powered by state-of-the-art machine-learning (ML) models. It is also observed that this improvement is dependent on the accuracy of the ML model in a manner that exhibits diminishing returns: once a certain accuracy is reached, factors that are instead associated with experimental pathways begin to dominate trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.