Abstract
Abstract Color centers in diamond play a central role in the development of quantum photonic technologies, and their importance is only expected to grow in the near future. For many quantum applications, high collection efficiency from individual emitters is required, but the refractive index mismatch between diamond and air limits the optimal collection efficiency with conventional diamond device geometries. While different out-coupling methods with near-unity efficiency exist, many have yet to be realized due to current limitations in nanofabrication methods, especially for mechanically hard materials like diamond. Here, we leverage electron-beam-induced etching to modify Sn-implanted diamond quantum microchiplets containing integrated waveguides with a width and thickness of 280 nm and 200 nm, respectively. This approach allows for simultaneous high-resolution imaging and modification of the host matrix with an open geometry and direct writing. When coupled with the cathodoluminescence signal generated from the electron–emitter interactions, we can monitor the enhancement of the quantum emitters in real-time with nanoscale spatial resolution. The operando cathodoluminescence measurement and fabrication around single photon emitters demonstrated here provide a new foundation for the potential control of emitter–cavity interactions in integrated quantum photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.