Abstract

AbstractThe application of closed‐loop control to enforce a target front speed during frontal polymerization (FP) of dicyclopentadiene under various initial and boundary conditions is demonstrated. Uncontrolled propagation of FP reactions can result in frontal quenching due to heat loss, unstable front propagation, material overheating, spontaneous pattern formation, and heterogenous cured material properties. These disadvantageous properties of FP limit its use to cases with highly controlled initial and boundary conditions. It is shown with results in simulation that these problems can be mitigated in three ways through the application of closed‐loop control. First, it is shown that a target front speed can be enforced by locally controlling the temperature field during FP via an external heat source. Second, it is shown that this method prevents unstable front propagation and quenching despite adverse initial and boundary conditions. Third, it is shown that this method minimizes cure time and energy consumption compared to bulk heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call