Abstract

Current methods of drug dosing rely on physical parameters (such as sex, age and weight) that do not account for genetic and physiological differences among individual patients. These differences can greatly affect how drugs are processed in the body and can result in ineffective underdosing or toxic overdosing. Here, we describe a generalizable closed-loop system consisting of a biosensor, controller and infusion pump, and a model of drug pharmacokinetics that continuously monitors and adjusts the concentration of a given drug in the body. As proof of concept, we demonstrate that the system can maintain the concentration of doxorubicin—a widely used chemotherapy drug—in live rabbits and rats at any desired set point and in real time, while automatically compensating for large pharmacokinetic differences among individual animals and stabilizing dramatic perturbations arising from acute drug–drug interactions. The feedback-loop system opens up the possibility of tightly controlled, patient-specific dosing of chemotherapeutics and other drugs within narrow therapeutic windows. A closed-loop control system measures and adjusts the concentration of a chemotherapeutic in real time and maintains it within a predefined therapeutic window in both rabbits and rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.