Abstract
Due to its key advantages of top performance, strong torque, and simple volume, brushless direct current (BLDC) motors are now extensively employed in a variety of industrial sectors, including the automotive industry, robotics, and electrical vehicles. Yet, in some circumstances, it can be challenging to use speed control techniques for specific devices. The major goal of this work is to use a proportional integral derivative (PID) converter to regulate the speed characteristics of BLDC. PID converter is preferred over all other converters because of its straightforward design and straightforward implementation. Using MATLAB simulation results are verified at different reference speed changing conditions, the motor input current and back electromotive force (EMF) values are verified. The speed and torque characteristics are verified during steady and transient state conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Power Engineering (IJAPE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.