Abstract
Deconstructing solid-state batteries (SSBs) to physically separated cathode and solid-electrolyte particles remains intensive, as does the remanufacturing of cathodes and separators from the recovered materials. To address this challenge, we designed supramolecular organo-ionic (ORION) electrolytes that are viscoelastic solids at battery operating temperatures (-40° to 45°C) yet are viscoelastic liquids above 100°C, which enables both the fabrication of high-quality SSBs and the recycling of their cathodes at end of life. SSBs implementing ORION electrolytes alongside Li metal anodes and either LFP or NMC cathodes were operated for hundreds of cycles at 45°C with less than 20% capacity fade. Using a low-temperature solvent process, we isolated the cathode from the electrolyte and demonstrated that refurbished cells recover 90% of their initial capacity and sustain it for an additional 100 cycles with 84% capacity retention in their second life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.