Abstract

AbstractA set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are many-one reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.KeywordsRecursive FunctionKolmogorov ComplexityRecursive ApproximationRecursion TheoryUniversal Turing MachineThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.