Abstract

In this article, we study geometric aspects of semi-arithmetic Riemann surfaces by means of number theory and hyperbolic geometry. First, we show the existence of infinitely many semi-arithmetic Riemann surfaces of various shapes and prove that their systoles are dense in the positive real numbers. Furthermore, this leads to a construction, for each genus $g \geq 2,$ of infinite families of semi-arithmetic surfaces with pairwise distinct invariant trace fields, giving a negative answer to a conjecture of B. Jeon. Finally, for any semi-arithmetic surface we find a sequence of congruence coverings with logarithmic systolic growth and, for the special case of surfaces admitting modular embedding, we are able to exhibit explicit constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call