Abstract
In previous research, the twin rotor damper (TRD), an active mass damper, was presented including control algorithms for monofrequent vibrations. In a preferred mode of operation, the continuous rotation mode, two eccentric masses rotate in opposite directions about two parallel axes with a mostly constant angular velocity. The resulting control force is harmonic. Within this paper, the steady-state response of a single-degree-of-freedom (SDOF) oscillator subjected to a harmonic excitation force with and without the TRD is studied. A closed-form solution is presented and validated experimentally. It is shown that the TRD provides damping to the SDOF oscillator until a certain frequency ratio is reached. The provided damping is not only dependent on the design parameters of the TRD but also depends on the steady-state vibration amplitude. The solution serves as a powerful design tool for dimensioning the TRD. The analytical closed-form solution is applicable for other active mass dampers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.