Abstract

The problem of the integration of the static governing equations of the uniform Euler–Bernoulli beam with discontinuities is studied. In particular, two types of discontinuities have been considered: flexural stiffness and slope discontinuities. Both the above mentioned discontinuities have been modeled as singularities of the flexural stiffness by means of superimposition of suitable distributions (generalized functions) to a uniform one dimensional field. Closed form solutions of governing differential equation, requiring the knowledge of the boundary conditions only, are proposed, and no continuity conditions are enforced at intermediate cross-sections where discontinuities are shown. The continuity conditions are in fact embedded in the flexural stiffness model and are automatically accounted for by the proposed integration procedure. Finally, the proposed closed form solution for the cases of slope discontinuity is compared with the solution of a beam having an internal hinge with rotational spring reproducing the slope discontinuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.