Abstract

Buckling and postbuckling behavior of symmetric laminated composite plates with surface mounted and embedded piezoelectric actuators subjected to mechanical, thermal, electrical, and combined loads is studied. Formulation is based on the classical laminated plate theory with von-Karman non-linear kinematic relations. Initial geometrical imperfections are also accounted, and finally applying Galerkin procedure, the resulting equations are solved to obtain closed form expressions for non-linear equilibrium paths. Temperature dependency of thermo-mechanical properties is considered. Three cases of simply supported boundary conditions are investigated. Effects of in-plane compressive loading, temperature dependency and independency of properties, electrical loading, lay-up configuration, and geometric imperfection are discussed. Results for various states are verified with the known data in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.