Abstract
In this paper the quasilinearization technique along with the Chebyshev polynomials of the first type are used to solve the nonlinear-quadratic optimal control problem with terminal state constraints. The quasilinearization is used to convert the nonlinear quadratic optimal control problem into sequence of linear quadratic optimal control problems. Then by approximating the state and control variables using Chebyshev polynomials, the optimal control problem can be approximated by a sequence of quadratic programming problems. The paper presents a closed form solution that relates the parameters of each of the quadratic programming problems to the original problem parameters. To illustrate the numerical behavior of the proposed method, the solution of the Van der Pol oscillator problem with and without terminal state constraints is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.