Abstract

In this paper we derive for the even dimensional case a closed form of the Fourier–Borel kernel in the Clifford analysis setting. This kernel is obtained as the monogenic component in the Fischer decomposition of the exponential function \({e^{\langle \underline{x}, \underline{u} \rangle}}\) where \({\langle . , . \rangle}\) denotes the standard inner product on the m-dimensional Euclidean space. A first approach based on Clifford analysis techniques leads to a conceptual formula containing the Gamma operator and the so-called Clifford–Bessel function, two fundamental objects in the theory of Clifford analysis. To obtain an explicit expression for the Fourier–Borel kernel in terms of a finite sum of Bessel functions, this formula remains however hard to work with. To that end we have also elaborated a more direct approach based on special functions leading to recurrence formulas for a closed form of the Fourier–Borel kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.