Abstract

This paper presents kinematic analysis of a spatial closed-chain mechanism with applications in the stance phase of human gait and in postural studies. Based on a specific sequence of body-fixed rotations and an appropriate set of independent coordinates, a closed-form solution has been successfully obtained by suitably imposing the kinematic constraints. This approach reduces the numerical stiffness index of the respective dynamic system from three to two, and provides a set of ordinary differential equations instead of differential/algebraic equations describing system dynamics. As a result, it allows more stable integration and more efficient direct dynamic simulation. This approach is not universal for all closed-chain mechanisms. However, it is anticipated that this approach will have valuable influence on modeling biped locomotion in biomechanics and robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.