Abstract

Proxies for unobserved skills and technologies are increasingly available in empirical data. For dynamic discrete choice models of forward-looking agents where a continuous state variable is unobserved but its proxy is available, we derive closed-form identification of the structure by explicitly solving integral equations. In the first step, we derive closed-form identification of Markov components, including the conditional choice probabilities and the law of state transition. In the second step, we plug in these first-step identifying formulas to obtain primitive structural parameters of dynamically optimizing agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.