Abstract

Approximate expressions for the macroscopic out-of-plane elastic coefficients of brick masonry with a regular pattern are derived in closed form using a homogenization approach for periodic media. Following an approach similar to the Method of Cells for fiber reinforced composites, a (piecewise-)differentiable expression depending on very a limited number of degrees of freedom and fulfilling suitable periodicity conditions is proposed for the microscopic transverse displacement field over any Representative Volume Element (RVE). Some of the equilibrium conditions at the interfaces between bricks and mortar joints are also fulfilled. By averaging the moment and curvature fields over the RVE, the macroscopic bending stiffness coefficients can be explicitly obtained. Using the FE solution of a masonry panel subjected to elementary load conditions as a benchmark, the proposed approach is found to accurately match the numerically obtained stiffness coefficients, for masonry elements of different geometry and different mechanical properties. In several instances, the proposed expressions agree with the numerical predictions better than other analytical expressions available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.